2021 Consumer Confidence Report for Public Water System BASTROP COUNTY MUD 1

This is your water quality report for January 1 to December 31, 2021

For more information regarding this report contact:

BASTROP COUNTY MUD 1 provides ground water from the Carrizo - Wilcox aquifer located in Bastrop County.

Name: Bastrop County MUD #1

Phone: 512-402-1990

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (512) 402-1990.

Definitions and Abbreviations

Definitions and Abbreviations The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been

found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation

has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment

technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of

microbial contaminants.

Maximum residual disinfectant level goal or

MRDLG:

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of

disinfectants to control microbial contaminants.

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb: micrograms per liter or parts per billion

ppm: milligrams per liter or parts per million

ppq parts per quadrillion, or picograms per liter (pg/L)

ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

BASTROP COUNTY MUD 1 purchases water from AQUA WSC. AQUA WSC provides purchase ground water from the Carrizo - Wilcox aquifer located in Bastrop County.

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact Bastrop County MUD #1 at 512-402-1990.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2020	1.3	1.3	0.2	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2020	0	15	2.7	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

2021 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination

Haloacetic Acids (HAA5)	2021	5.6	5.6 - 5.6	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2021	25.6	25.6 - 25.6	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2021	0.08	0.08 - 0.08	10	10	ppm		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

From 2021 DLQOR's

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine	2021	1.54	1.34 - 2.0	4	4	ppm	N	Water additive used to control microbes.

2021 Provider Water Quality Test Results from AQUA WSC

Aqua Water Supply Corporation 2021 Safe Drinking Water Sample Results

Radiochemicals

Contaminate (Units)	MCL	MCLG	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled			2017	2017	2017	2017	2017	2017	2017	2021	2017	2020	2021	2021			
Gross Beta Particles (pCi/L)	50	0	<4.0	<4.0	<4.0	<4.0	5.0	<4.0	<4.0	<4.0	5.7	5.2	5.4	4.4	<4.0-5.7	5.7	Decay of natural and man-made deposits
Radium 228 (pCi/L) 226/228	5	0	<1.0	<1.0	<1.0	1.15	<1.0	<1.0	<1.0	<1.0	<1.0	1.53	<1.0	<1.0	<1.0-1.53	1.53	Erosion of natural deposits.
Gross Alpha Excluding Radon/Uranium (pCi/L)	15	0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0			Erosion of natural deposits.
Gross Alpha Including Radon/Uranium (pCi/L)	15	0										<3.0					Erosion of natural deposits.
Uranium (ppb)	30	0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2 2 3		Erosion of natural deposits.

Inorganics (All Metals)

Contaminate	MCLG	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled			2020	2020	2020	2020	2020	2019	2019	2021	2019	2020	2021	2021		es un cons	
Total Hardess as CaCO, by Cal. (mg/L)			13.5	55.3	158	43.9	220	45.0	2.87	178	173	129	22.4	152	ET STEWNS		
Aluminum (mg/L)			<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02			
Antimony (ppb)	6	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder.
Arsenic (ppb)	10	0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			Erosion of natural deposits: Runoff from orchards; Runoff from glass and electronics production wastes.
Barium (ppm)	2	2	0.0656	0.0816	0.1450	0.128	0.119	0.0372	0.0124	0.1100	0.0361	0.142	0.0797	0.0798	0.0124-0.145	0.145	Discharge of frilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Beryllium (ppb)	4	4	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80	<0.80			Discharge from metal refineries and coal- burning factories; Discharge from electrical, aerospace, and defense industries.
Cadmium (ppb)	5	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints.
Calcium (mg/L.)			3.43	12	48	11.3	72.6	11.8	1.15	55.1	47.2	38.3	6	35.1			
Chromium (ppb)	100	100	<10	<10	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0			Discharge from steel and pulp mills; Erosion of natural deposits.
Copper (mg/L)			0.013	0.017	0.0025	0.0202	0.0095	0.0103	0.0113	0.0026	0.0296	0.0078	<0.002	0.003		100	
ron (mg/L)			0.014	0.036	0.011	0.066	0.035	0.062	0.017	0.012	0.016	< 0.01	0.014	<0.01			
ead (mg/L)			<0,001	< 0.001	<()()())]	<0.001	0.0024	<0.001	< 0.001	<0.001	0.0014	< 0.001	< 0.001	<0.001			
Magnesium (mg/L)			1.21	6.15	9.26	3.82	9.45	3.78	<1.00	9.72	13.3	8.07	1.8	15.7			
Manganese (mg/L)			0,007	0.0169	0.0016	0.0201	0.0042	0.0148	0.0021	<0.001	0.0017	<0.001	0.0011	<(0,00)		S. Carlot	
Mercury (ppb)	2	2	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40			Erosion of natural deposits: Discharge from refineries and factories; Runoff from landfill Runoff from cropland.
Nickel (mg/L)			<0.001	<(),()()]	<(),()()1	<0.001	0.0015	< 0.001	<(),()()]	0.001	0.0015	<(),()()	0.0079	<()_()() {			
Potassium (mg/L)			2.11	2.36	2.46	2.33	3.00	3.15	<1.(10)	2.58	4.4	3.18	5.73	3.51			
Selenium (ppb)	50	50	<3.0	5.2	5.5	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0-5.5	5.5	Discharge from petroleum and metal refineries; Ersion of natural deposits; Discharge from mines.
silver (mg/L)			<0.01	<0.01	<(),()]	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
Sodium (mg/L)			172	256	77.7	73.6	27.4	119	102	54.6	61.2	68.1	15.6	113			
Fhallium (ppb)	0.5	2	<0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	< 0.40	< 0.40	<0.40	<0.40	<0.40	<0.40			Discharge from electronics, glass, and drug
(inc (mg/L)			0.0052	<0.005	0.0121	0.0118	< 0.005	0.0057	0.011	<0.005	0.0209	< 0.005	0.0334	<0.005		V 1971	

Inorganics (Single Mineral)

Contaminate	MCLG	MCL	Rosanky (1)	S (2)		Highway 21 (4)	Camp Swift (5)		_		Blue (9)				Range	Highest	Likely Source
Year Sampled			2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020			The transfer of the second
Cyanide (ppb)	200	200	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	30	<10.0	<10.0	<10.0	<10.0	<10.0			Discharge from steel/metal factories; Discharge from plastic and fertilizer factories

Inorganics (Minerals)

Constituent	MCLG	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
			attended to the same		1												
Year Sampled			2020	2020	2020	2020	2020	2020	2020	2021	2020	2020	2021	2021			
pH (S.U.)			8.5	7.4	7.7	7.6	7.4	7	7.8	8.1	7.7	7.7	8.5	8.4			
Diluted Conductance (µmho/cm)			765	1300	735	423	644	684	441	604	693	596	150	831			
Phenolphthalem Alkalinty as CaCO ₃ (mg/L)			<2	0	2	<2	<2	<2	<2	<10	<2	2	<10	<10			
Fotal Alkalinty as CaCO3 (mg/L)			369	429	212	174	180	217	185	203	176	205	16	249			
Bicarbonate (mg/L)			450	523	259	212	220	265	226	248	215	250	20	300			
Carbonate (mg/L)			<2	<2	<2	<2	<2	<2	2	<10	<2	<2	<10	<10			
											Sec.	VIEW I				The last	Erosion of Natural deposits; Water additive whic
Fluoride (ppm)	4	4	0.5	0.92	0.34	0.18	0.21	0.13	0.18	0.38	0.12	0.21	<0.1	0.42	<0.1-0.92	0.92	promotes strong teeth; Discharge from fertilizer
						the material and							L. Charles				and aluminum factories.
Chloride (mg/L)			22	9.1	79	18	47	33	28	48	47	35	25	76			
Sulfate (mg/L)			9	82	32	21	62	73	9	21	87	44	18	37			
Fotal Dissolved Solids (mg/L)			448	724	395	257	381	398	264	352	389	334	1.12	430			
Ni Ni.	10	10	0.05	0.12	.0.05	< 0.05	-0.05	0.06	0.00	-0.05	<0.05	<0.05	<0.05	<0.05	<0.05-0.13	0.13	Runoff from fertilizer use; Leaching from septic
Nitrate as N (ppm)	10	10	< 0.05	0.13	< 0.05	<0.05	< 0.05	0.06	0.06	< 0.05	<0.05	<0.05	<0.05	<0.03	<0.03-0.13	0.15	tanks, sewage; Erosion of Natural deposits.

Non Regulated

Inorganics (Nitrate/Nitrite)

Constituent	MCLO	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled			2019	2019	2019	2019	2019	2019	2019	2020	2019	2019	2020	2020			
Nitrite as N (ppm)	1	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05			Runoff from fertilizer use; Leaching from septic, sewage; Erosion of natural deposits.
Year Sampled			2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021			
Nitrate as N (ppm)	10	10	<0.05	0.13	<0.05	0.05	<0.05	0.06	0.06	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05-0.13		Runoff from fertilizer use; Leaching from septic, sewage; Erosion of natural deposits.

Semivolatile Organic Compounds (Pesticides) SOC5

Contaminate	MCLG	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled			2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2019	THE R		
Chlordane (ppb)	0	2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	< 0.20	T 1 7 1		Residual of banned termiticide.
Endrin (ppb)	2	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			Residual of banned insecticide.
Heptachlor epoxide (ppt)	0	200	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0			Breakdown of heptchlor
Toxaphene (ppb)	0	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		2.00	Runoff/leaching from insecticide used on cotton and cattle.

Semivolatile Organic Compounds (Herbicides)

Contaminate	MCLG	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled			2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020			TO A CONTRACTOR
2.4-D (ppb)	70	70	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			Runoff from herbicide used on row crops.
2,4,5-TP Silvex (ppb)	50	50	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			Residue of banned herbicide.
Pentachlorophenol (ppb)	0	1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			Discharge from wood preserving factories.
Dalapon (ppb)	200	200	<1	<1	<l< td=""><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td></td><td></td><td>Runoff from herbicide used on right of way.</td></l<>	<1	<1	<1	<1	<1	<1	<1	<1	<1			Runoff from herbicide used on right of way.
Dinoseb (ppb)	7	7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			Runoff from herbicide used on soybeans and vegetables.
Picloram (ppb)	500	500	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			Herbicide runoff.
Acifluorfen (µg/L)*			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Bentazon (μg/L)*			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
Chloraben (µg/L)*			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
2,4-DB (μg/L)*			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
Dicamba (μg/L)*			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
3,5-Dichlorobenzoic acid (µg/L)*			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Dichlorprop (µg/L)*			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
Quinclorae (µg/L)*			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
2.4,5-T (μg/L)*			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5			
Non Regulated Compounds													13.00				

Semivolatile Organic Compounds

Near Sampled	<0.2 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3 <0.1 200 <20.0 2 <0.2 2 <0.2 2 <0.2 400 <0.6 6 <0.6 400 <40.0 1 <0.1	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.6 <40.0 <40.0	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6 <40.6	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.6 <40.6	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.6 <0.6	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6 <0.6	<pre>2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.6</pre>	<pre>2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6</pre>	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.6	2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2	 2021 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 	<pre>2019 <0.2 <0.1 <20.0 <0.2 <0.2 <0.2 <0.2 </pre>			Runoff from herbicide used on row crops. Runoff from herbicide used on row crops. Leaching from linings of water storagetanks and distribution lines. Residue of banned herbicide Residue of banned herbicide
Atrazine (pph) 3 3 3 3 3 3 3 3 3	<0.1 <0.20.0 <0.20.0 <0.20.0 <0.20.0 <0.0.0 <0.0.0 <0.0.0 <0.0 <	3 <0.1 200 <20.0 2 <0.2 2 <0.2 2 <0.2 400 <0.6 6 <0.6 400 <40.0 1 <0.1	<0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6 <40.0	<0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6 <0.6	<0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6 <0.6	<0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6	<0.1 <20.0 <0.2 <0.2 <0.2 <0.2 <0.6	<0.1 <20.0 <0.2 <0.2 <0.2	<0.1 <20.0 <0.2 <0.2 <0.2	<0.1 <20.0 <0.2 <0.2 <0.2	<0.1 <20.0 <0.2 <0.2 <0.2	<0.1 <20.0 <0.2 <0.2	<0.1 <20.0 <0.2 <0.2			on row crops. Runoff from herbicide use on row crops. Leaching from linings of water storagetanks and distribution lines. Residue of banned herbicia
Senzo(a)pyrene (ppt)	0 <20.1 <0.2 <0.2 <0.2 <0.6 <0.6 <0.6 <0.1 <0.1	200 <20.0 2 <0.2 2 <0.2 2 <0.2 400 <0.6 6 <0.6 400 <40.0 1 <0.1	<20.0 <0.2 <0.2 <0.2 <0.6 <0.6 <40.0	<20.0 <0.2 <0.2 <0.2 <0.2 <0.6 <0.6	<0.2 <0.2 <0.2 <0.2 <0.6 <0.6	<20.0 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.6	<20.0 <0.2 <0.2 <0.2	<20.0 <0.2 <0.2 <0.2	<20.0 <0.2 <0.2 <0.2	<20.0 <0.2 <0.2 <0.2	<20.0 <0.2 <0.2	<20.0 <0.2 <0.2			on row crops. Leaching from linings of water storagetanks and distribution lines. Residue of banned herbicic
Ipha-Chlordane (pph)	<0.2 <0.2 <0.2 <0.6 <0.6 <0.6 <0.1 <0.1	2 <0.2 2 <0.2 2 <0.2 400 <0.6 6 <0.6 400 <40.0	<0.2 <0.2 <0.2 <0.6 <0.6 <40.0	<0.2 <0.2 <0.2 <0.6 <0.6	<0.2 <0.2 <0.2 <0.6 <0.6	<0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.6	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2	<0.2			water storagetanks and distribution lines. Residue of banned herbicic
amma-Chlordane (ppb) 0 2 rans-Nonachlor (ppb) 0 2 rans-Nonachlor (ppb) 0 400 bit2-ethylhexyl) adipate (ppb) 0 6 leptachlor (ppt) 0 400 leptachlor (ppt) 0 1 lexachlorobenzene (ppb) 0 1 lexachlorocyclopentadiene (ppb) 50 50 indane (ppi) 200 200 fethoxychlor (ppb) 4 4 cenaphthene (ppl) 4 4 cenaphthylene (ppl) 4 4 cenaphthylene (ppl) 4 4 cenzola lantinacene (ppl) 4 4 cenzola lantinacene (ppl) 4 4 cenzola lantinacene (ppl) 4 5 cenzola lantinacene (ppl) 4 6 cenzola lantinacene (ppl) 7 cenzola lituoranthene (ppl) 8 cenzola lantinacene (ppl) 9 cenzola	<0.2 <0.2 <0.3 <0.4 <0.4 <0.6 <0.6 <0.6 <0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2 <0.2 2 <0.2 400 <0.6 6 <0.6 400 <40.0 1 <0.1	<0.2 <0.2 <0.6 <0.6 <40.0	<0.2 <0.2 <0.6 <0.6	<0.2 <0.2 <0.6 <0.6	<0.2 <0.2 <0.6	<0.2 <0.2 <0.6	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2		-23	Residue of banned herbicion
rans-Nonachlor (ppb) 0 2 Dit2-ethylhexyl) adipate (ppb) 400 400 Dit2-ethylhexyl) phthalate (ppb) 0 6 deptachlor (ppt) 0 400 dexachlorobenzene (ppb) 0 1 dexachlorocyclopentadiene (ppb) 50 50 indane (ppi) 200 200 dethoxychlor (pph) 40 40 dethoxychlor (pph) 40 40 imazine (pph) 40 400 imazine (pph) 40 40 imazine (pph) 40 4	<0.2) <0.6 <0.6) <40.0 <0.1	2 <0.2 400 <0.6 6 <0.6 400 <40.0	<0.2 <0.6 <0.6 <40.0	<0.2 <0.6 <0.6	<0.2 <0.6 <0.6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2					Residue of banned herbicic
bi(2-ethylhexyl) adipate (pph) bi(2-ethylhexyl) phthalate (ppb) bi(2-ethylhexyl) phthalate (ppb) betachlor (ppt) devachlorobenzene (ppb) betachlorocyclopentadiene (ppd.) betachlorocyclopentadiene (ppb) betachlor	(0.6) (0.6) (0.7) (0.1) (0.1)	400 <0.6 6 <0.6 400 <40.0 1 <0.1	<0.6 <0.6 <40.0	<0.6	<0.6	<0.6	<0.6					<0.2	<0.2		-	
bi(2-ethylhexyl) phthalate (ppb) 0 6 leptachlor (ppt) 0 400 lexachlorobenzene (ppb) 0 1 lexachlorocyclopentadiene (ppb) 50 50 indane (ppt) 200 200 lethoxychlor (ppb) 40 40 imazine (pph) 4 4 conaphthene (ppl.) 5 conaphthylene (ppl.) 5 conaphthylene (ppl.) 6 ldrin (ppl.) 6 conzola hanthracene (ppl.) 7 conzola halber (ppl.) 7 conzola halber (ppl.) 8 conzola halber (ppl.) 9 conzola	<0.6) <0.1) <0.1	6 <0.6 400 <40.0 1 <0.1	<0.6	<0.6	<0,6			<0.6	<0.6	<0.6				S		Runoff from herbicide used on row crops.
deptachlor (ppt)	<0.1 <0.1	1 <0.1	<4(),()			<0.6	<0.6				<0.6	<0.6	<0.6			Discharge from chemical factories.
dexachlorobenzene (ppb) 0 1 dexachlorocyclopentadiene (ppb) 50 50 indane (ppi) 200 200 dethoxychlor (ppb) 40 40 imazine (pph) 4 4 decaphthylene (ppd.) derive (ppd.)	<0.1	1 <0.1	 	<4(),()	<40.0			<0.6	<0.6	<0.6	<0.6	<0.6	<0.6			Discharge from rubber and chemical factories.
dexachlorocyclopentadiene (ppb) 50 50 indane (ppi) 200 200 dethoxychlor (ppb) 40 40 imazine (pph) 4 4 conaphthene (µg/L)* derive (pg/L)* derive (pg/L)* derive (pg/L)* derive (pg/L)* derive (pg/L)* enzo(a) antiracene (µg/L)* enzo(a) filtioranthene (µg/L)* itaskhor (µg/L)* diskhoracylpathalate (µg/L)* chhorobiphenyl (µg/L)* h tysene (µg/L)* itaskhor (µg/L)*	<0.1		<0.1	1		<40.0	<40.0	<4(),()	<40.0	<40.0	<40.0	<4().()	<40.0			Residue of banned termiticide.
Acthoxychlor (pph) Actinazine (pph) Accomphithene (µg/L)* Addrin (µg/L)* A		50 <0.1		<0.1	<0.1	<(),1	<0.1	<(),]	<0.1	<(),1	<0.1	<0.1	<0.1		1	Discharge from metal refineries and agricultural chemical factories.
Methoxychlor (ppb) 4 4 Acenaphthene (µg/L)* Acenaphthylene (µg/L)* Acenaphthylene (µg/L)* Addrin (µg/L)* Addr	<20.0		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<().1	<0.1	<0.1	<().1	<0.1			Discharge from chemical factories.
imazine (pph) 4 4 cenaphthene (µg/L)* den (µg/L)* den (µg/L)* intracene (µg/L)* enzo[a]athiracene (µg/L)* enzo[a]athiracene (µg/L)* enzo[a]athiracene (µg/L)* enzo[a]athiracene (µg/L)* enzo[a]athiracene (µg/L)* intracilor (µg/L)* cenzo[a]athiracene (µg/L)* conacil (µg/L)* intracilor (µg/L)*	1	200 <20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0		li	Runoff/leaching from nsecticide used on cattle, umber, gardens.
Acenaphthene (µg/L)* Acenaphthylene (µg/L)* Addra (µg/L)* Anthracene (µg/L)* Senzo(a)anthracene (µg/L)* Senzo(a)diftuoranthene (µg/L)* Senzo(k)ffuoranthene (µg/L)* Soromacii (µg/L)* Sutachlor (µg/L)* Sutachlor (µg/L)* Attivithenzylphthalate (µg/L)* Chlorohyhenyl (µg/L)* Thysene (µg/L)* Sutschlar (µg/L)*	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		į,	Runoff/leaching from nsecticide used on fruits, regetables, alfalfa, and ivestock.
Accomplished (pg/L)* Indiracene (pg/L)*			< 0.07	< 0.07	< 0.07	<0.07	< 0.07	< 0.07	<0.07	<0.07	< 0.07	< 0.07	<0.07		ŀ	Herbicide runoff.
Idin (µg/L)* infracene (µg/L)* enzo(a)anthracene (µg/L)* enzo(b]thioranthene (µg/L)* enzo(k]fluoranthene (µg/L)* romacil (µg/L)* romacil (µg/L)* utschlor (µg/L)* Chlorohiphenyl (µg/L)* h ysene (µg/L)* ibenz[a,h]anthracene (µg/L)*		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<(),2()	<0.20			
nthracene (µg/L)* enzo(a)anthracene (µg/L)* enzo(b)fluoranthene (µg/L)* enzo(b,fi,f perylene (µg/L)* enzo(b,filooranthene (µg/L)* romacii (µg/L)* utxibior (µg/L)* Chlorohiphenyl (µg/L)* hrysene (µg/L)*	The second second	<(),2()	<0.20	<().2()	<0.20	<0.20	<().2()	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20			CONTRACTOR OF THE
enzo(a)anthracene (µg/L)* enzo[g.h.i]perylene (µg/L)* enzo[g.h.i]perylene (µg/L)* enzo[k]fluoranthene (µg/L)*		<0.20	<().2()	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	<().2()	< 0.20	< 0.20			
enzo[b]fluoranthene (µg/L)* enzo[s.h.i]perylene (µg/L)* enzo[k]fluoranthene (µg/L)* romacil (µg/L)* utschlor (µg/L)* otschlor (µg/L)* Chlorohphenyl (µg/L)* hrysene (µg/L)* ibenz[a.h]anthracene (µg/L)*	_	<(),2()	<(),20)	<(),2()	<0.20	<0.20	<().2()	<(),2()	< 0.20	< 0.20	< 0.20	< 0.20	<0.20			EAT MADE OF THE
enzo[g.h.i]perylene (µg/L)* enzo[k]fluoranthene (µg/L)* romacil (µg/L)* utachlor (µg/L)* utachlor (µg/L)* chlorohyhenyl (µg/L)* utysene (µg/L)* ibenz[a.h]anthracene (µg/L)*		<0.20	<0,20	<0.20	<0.20	<0.20	<(),2()	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20			
enzo[k]fluoranthene (µg/L)* romacil (µg/L)* utacifier (µg/L)* utalibenzylphthalate (µg/L)* Chlorohiphenyl (µg/L)* h ysene (µg/L)* ibenz[a,h]anthracene (µg/L)*	_	<0.20	<0.20	<0.20	<0.20	<0.20	<(),2()	<().2()	<(1,20)	< 0.20	<0.20	<0.20	<0,20			
romacil (µg/L)* utachlor (µg/L)* utylbenzylphthalate (µg/L)* Chlorohiphenyl (µg/L)* hrysene (µg/L)* thenz[a,h]anthracene (µg/L)*		<0.20	<0.20	<(),2()	<0.20	<(0.20)	<().2()	<0.20	< 0.20	<0.20	<0.20	<(),2()	<0.20			
utachlor (µg/L.)* utylbenzylphthalate (µg/L.)* Chlorohiphenyl (µg/L.)* hrysene (µg/L.)* thenz[a,h]anthracene (µg/L.)*		<0.20	<().20	<0.20	<(0.20)	<0.20	<0.20	<(),2()	<().20	<(0,20)	<0.20	<(1.20)	<0,20			
utylbenzylphthalate (µg/L)* Chlorohiphenyl (µg/L)* hrysene (µg/L)* ibenzja,hjanthracene (µg/L)*		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<().2()	<().2()	<0.20	<()_2()	<0.20	<0.20			
Chlorobiphenyl (µg/L) havsene (µg/L) havsene (µg/L) havsene (µg/L) hanthracene (µg/L) h	<2.0		<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20			
hrysene (μg/L)* thenz[a,h]anthracene (μg/L)*		<0.20	<0.20	<0.20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	<2.0	<2.0			
ibenz[a,h]anthracene (μg/L)*	_	<0.20	<0.20	<0.20	<(1,20)	<0.20	<0.20	<().2()	<().20	<0.20	<0.20	<0.20	<().20			
	A STATE OF THE PARTY OF THE PAR	<0.20	<0.20		<0.20	<0.20	<(),2()	<(0.20)	<0.20	<0.20	<0.20	<0.20	<0.20			
-n-butylphthalate (µg/L)*	<2.0		<2.0	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20			
3-Dichforobiphenyl (µg/L)*		<0.20	<0.20	<0.20	<0.20											
cldrin (µg/L)*		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<(),2()	<0.20	<0.20	<0.20			
ictiviti (µg/L)*			<2.0				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20			AND PROPERTY.
inethylphthalate (µg/L)*	2211		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2,0	<2.0	<2.0	<2.0			
uorene (µg/L)*	<2.0		<0.20	<0.20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
	<2.0				<0.20	<0.20	<0.20	<0.20	<0.20	<(),2()	<0.20	<().2()	<0.20			
2',3,3',4,4',6-Heptachlorobiphenyl (µg/L)*	<2.0 <0.20		<0.50	<(),5()	<0.51	<0.50	<0.50	<(),5()	<().51	<()_5()	<0.51	<0.50	<0.50			
2',4,4',5,6'-Hexachlorobiphenyl (µg/L)* deno[1,2,3-ed]pyrene (µg/L)*	<2.0 <0.20 <0.50	< 0.20	<0.20	<(),2()	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20			

Contaminate	MCLG MCL I	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range Highest	Likely Source
Year Sampled		2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2019		
vletolachlor (µg/L)*		< 0.20	<(0.20)	<().2()	<0.20	< 0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20	<0.20		
Metribuzin (μg/L)*		< 0.20	< 0.20	<(),2()	<0.20	<(0.20)	<(1,21)	< 0.20	<0.20	<(),20	< 0.20	<0.20	<0.20		
Naphthalene (µg/L)*		<(0,20)	< 0.20	<(),2()	<0.20	<(),2()	<0.20	<0.20	<(),2()	<0.20	< 0.20	<0.20	<0.20		
.2',3,3',4,5',6,6'-Octchlorobiphenyl (µg/L)*		< 0.50	< 0.50	<().50)	< 0.51	<0.50	<0.50	< 0.50	<0.51	< (0.50)	<0.51	< 0.50	< 0.50		
.2',3',4,6-Pentachforobiphenyl (μg/L)*		<0.20	< 0.20	<().2()	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20		
henanthrene (µg/L)*		<0.20	<(0.20)	<(0.20)	<0.20	<0.20	< 0.20	<(0,20)	<0.20	<0.20	<0.20	<0.20	< 0.20		
ropachlor (µg/L)*		<0.20	<0.20	< 0.20	<(0,20)	<(1,2()	<(0.20)	<0.20	<(),2()	<0.20	<0.20	< 0.20	< 0.20	The State of	
yrene (µg/L)*		<0.20	< (0.20)	<0.20	<0.20	<(0,20)	<0,20	<0.20	<0.20	<0.20	< 0.20	< 0.20	< 0.20		
2'.4.4'-Tetrachtorohiphenyl (µg/L)*		<0.20	< 0.20	<0.20	<(),2()	<0.20	<0.20	<().20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20		
4.5-Trichlorohiphenyl (µg/L)*		<0.20	< 0.20	< 0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20		
rifluralin (µg/L)*		<(),2()	<().20	<0.20	<0.20	<0.20	<(),2()	<0.20	<(),2()	< 0.20	< 0.20	<0.20	< 0.20		
ilfer (µg/L)								122							

Tentatively Identified Compounds
*** Sampled three times during the year.

Volatile Organic Compounds

Contaminate	MCLO	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled			2021	2021	2021	2021	2021	2021	2021	2021	2021	2020	2021	2021				
Benzene (ppb)	0	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from factories; Leaching from gas storage tank and landfills.
Carbon tetrachloride (ppb)	0	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from chemical plants and other industrial activities.
Monochlorobenzene (ppb)	100	100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from chemical and agricultural chemical factories.
o-Dichlorobenzene (ppb)	600	600	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from industrial chemical factories.
para-Dichlorobenzene (ppb)	75	75	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from industrial chemical factories.
1.2-Dichloroethane (ppb)	0	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from industrial chemical factories.
1,1-Dichloroethylene (ppb)	7	7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from industrial chemical factories.
cis-1.2-Dichloroethylene (ppb)	70	70	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6			Discharge from industrial chemical factories.
trans-1,2-Dichloroethylene (ppb)	100	100	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from industrial chemical factories.
1,2-Dichloropropane (ppb)	0	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from industrial chemical factories.
Dichloromethane (ppb)	0	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from pharmaceutical and chemical factories.
Ethylbenzene (ppb)	700	700	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from petroleum refineries.
Styrene (ppb)	100	100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from rubber and plastic factories; Leaching from landfills.
Tetrachloroethylene (ppb)	0	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Leaching from PVC pipes; Discharge from factories and dr cleaners.
Toluene (ppb)	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Discharge from petroleum factories.
1,2,4-Trichlorobenzene (ppb)	70	70	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.5				Discharge from textile-finishing factories.
1,1,1-Trichloroethane (ppb)	200	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.5				Discharge from metal degreasing sites and other factories.
1,1,2-Trichloroethane (ppb)	3	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.5				Discharge from industrial chemical factories.
Trichloroethylene (ppb)	0	. 5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.5	÷			Discharge from metal degreasing sites and other factories.
Vinyl chloride (ppb)	0	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	<0.5				Leaching from PVC pipes; Discharge from plastic factories
Total Xylenes (ppb)	10	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				Dioscharge from petroleum factories; Discharge from chemical factories.

Contaminate	MCLG MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled		2021	2021	2021	2021	2021	2021	2021	2021	2021	2020	2021	2021		V. AND DE		
Chlorofrom (µg/L)*		3.1	1.5	<1.0	1.0	1.0	1.2	1.7	<1.0	<1.0	1.7	<1.0	<1.0	<1.0-3.1	1.6	3.1	
Bromodichloromethane (µg/L)*		3.9	3.2	<1.0	<1.0	2.6	1.5	2.1	1.0	1.5	3.5	<1.0	1.2	<1.0-3.9	2.3	3.9	
Dibromochloromethane (µg/L)*		3.9	5.1	<1.0	<1.0	3.6	1.6	1.8	1.8	2.3	4.6	<1.0	2.5	<1.0-5.1	3.0	5.1	
Bromoform (µg/L)*		1.3	4.0	1.3	<1.0	2.1	<1.0	<1.0	1.7	1.6	2.1	<1.0	3.4	<1.0-4.0	2.2	4.0	
Dibromomethane (µg/L)*	Fig. 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		Late.		
.3-Dichlorobenzene (μg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
,1-Dichloropropene (µg/L)*	THE RES	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
,1-Dichloroethane (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
,1.2.2-Tetrachloroethane (µg/L)*	THE REAL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
3-Dichloropropane (μg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
'hloromethane (µg/L)*		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0				
Bromomethane (µg/L)*	70000	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0				
.2.3-Trichloropropane (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				REAL PROPERTY.
,1.1,2-Tetrachloroethane (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
'hloroethane (μg/L)*		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			200	
.2-Dichloropropane (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		TORES		
-Chlorotoluene (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
-Chlorotoluene (µg/L)≈		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
Fromobenzene (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
is-1,3-Dichloropropene (μg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
ans-1,3-Dichloropropene (µg/L)*		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
.2.4-Trimethylbenzene (μg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
.2.3-Trichlorobenzene (µg/L)≈≈		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
-Propylbenzene (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
-Butylbenzene (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
kaphthalene (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
lexachlorobutadiene (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
.3.5-Trimethylbenzene (μg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	* <1.0				
-lsopropyltoluene (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				PARTY PARKE
sopropylbenzene (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
Butylbenzene (μg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	222			
-Butylbenzene (μg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	E SEE			
richlorofluoromethane (µg/L)**		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0				
Dichlorodifluoromethane (µg/L)**		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0				
romochloromethane (µg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
cetone (μg/L)***		<10	<10	<10	<10	<10	<10	<10.	<10	<10	<10	<10	<10				
erylonitrile (μg/L)***		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10				
-Butanone MEK (μg/L)****		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10			(0.3).3	
arbon disulfide (μg/L)***		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			-47	
thyl methacrylate (µg/L)***		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
-Hexanone (μg/L)**		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
odomethane (µg/L)***		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0		7-1-	The second	
lethyl Methacrylate (µg/L)***		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	W. 300			
-Methyl-2-pentanone MIBK (μg/L)***		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	THE STATE OF			
lethyl-t-butyl ether MTBE (μg/L)***		< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<2.0	< 0.5	<0.5	<2.0	<2.0		Desire		
etrahydrofuran (μg/L)***		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				
inyl acetate (µg/L)***							7 10 10 10 10 10 10 10 10 10 10 10 10 10	对于									

^{***} Monitored Compounds [40 CFR 141.40(j)]
*** Other Compounds

Organics (EDB & DBCP)

Contaminate	MCLG	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled	1111		2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020			
Ethylene dibromide (ppt)	0	50	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0		-	Discharge from petroleum refineries
Dibromochloropropane (ppt)	0	200	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0			Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
1,2,3-Trichloropropane (µg/L)*			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			

Non Regulated Compound

Organics (Carbamates by HPLC)

Contaminate	MCLG	MCL	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Highest	Likely Source
Year Sampled			2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020			
Aldicarb (µg/L)		3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5			
Aldicarb sulfone (µg/L)		2	< 0.8	<0.8	<0.8	< 0.8	< 0.8	<0.8	<0.8	<0.8	< 0.8	<0.8	<0.8	< 0.8			
Aldicarb Sulfoxide (µg/L)		4	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5			
Carbofuran (ppb)	40	40	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9			Leaching from soil fumigant used on rice and alfalfa.
Oxamyl (ppb)	200	200	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			Runoff/leaching from insecticide used on apples, potatoes, and tomatoes.
Baygon (µg/L)*	MARK		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
Carbaryl (µg/L)*			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
8-Hydroxycarbofuran (µg/L)*			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			
Methiocarb (µg/L)*			<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0			
Methomyl (ug/L)*			<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0			

^{*} Monitored Compounds

Disinfection Byproducts (Distribution)

Contaminate	MCLG	MCL	8483 FM 713 (DBP1-01)	118 Sayers Road (DBP1-01)	125 Keller (DBP1-03)	154 FM 2239 (DBP1-04)	170 Loop Road (DBP1- 05)	17818 Lund Carlson (DBP1- 06)	2854 E Hwy 71 (DBP1-07)	(DRP1-08)	5384 FM 696 (DBP1-09)			RT 2 Box 140 Hwy 290 (DBP1-12)	Range	Highest	Average	Likely Source
Year Sampled			2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011			e i de a	
Total HAA5 (ppb)	n/a	60.0	3.7	1.6	3.2	12.8	<6.0	2.1	3.6	<6.0	1.3	<6.0	1.2	2.5	<6.0-12.8	12.8	1 16	By-product of drinking water disinfection.
Fotal THM (µg/L)	n/a	80.0	16.8	13.1	24.3	31.4	1.4	30.7	36.6	6.9	9.2	<4.0	10.1	14.9	<4.0-36.6	36.6	1 17 X 1	By-product of drinking water disinfection.

Unregulated Contaminants Monitoring Rule III

Entry Points

Volatile Organic Compounds (VOC)

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014								Trende	Trightest	Dikery Bource
Chlorodifluoromethane (HCFC-22)	μg/L	< 0.0800	< 0.0800	<0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	<0.0800	< 0.0800	<0.0800	<0.0800			0	
Chloromethane (Methyl chloride)	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	<0.200			0	
1,3-Butadiene	µg/L	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	<0.100	< 0.100	<0.100		-	0	
Bromomethane (Methyl Bromide)	µg/L	< 0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2		-	0	
.1-Dichloroethane	µg/L	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	<0.0300		< 0.0300		<0.0300	<0.0300	Torre I		0	
Bromochloromethane (Halon 1011)	µg/L	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600			< 0.0600	<0.0600	<0.0600	<0.0600		-	0	
,2,3-Trichloropropane	µg/L	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	_		< 0.0300		<0.0300	<0.0300			0	

Synthetic Organic Compounds (SOC)

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014								The state of the state of		
1,4-Dioxane	µg/L	< 0.0516	< 0.0521	< 0.0518	< 0.0522	< 0.0523	< 0.0525	< 0.0526	< 0.0519	< 0.0523	< 0.0525	< 0.0529	<0.0521		A TOTAL MANY	0	

Oxyhalide Anion

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014										and the state of
Chlorate	µg/L	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	29.5	<20.0	<20.0-29.5	29.5	29.5	

Metals

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled		The state of the state of					2014				,	(10)	processing (20)	Aunge	Trerage	Hightst	Likely Source
Chromium Total	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	<0.200	< 0.200	< 0.200	< 0.200		40000	0	
Cobalt Total	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	2.51	<1.00	<1.00-2.51	2.51	2.51	
Molybdenum Total	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	VI.00-2.51	2.31	0	
Strontium Total	µg/L	279	964	462	1050	457	891	64	401	4210	1210	63.5	1370	63.5-4210	952	4210	
Vananium Total	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	<0.200	<0.200	1.41	<0.200	<0.200-1.41	1.41	1.41	
Hexavalent Chromium	µg/L	0.0469	0.0371	<0.0300	0.0569	< 0.0300	< 0.0300	< 0.0300		-	<0.0300	0.133	<0.0300	<0.0300-0.133	0.07	0.133	

Perfluorinated Compounds

Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
						2014								- Trende	mgitest	Dikery Bource
µg/L	< 0.0818	< 0.0806	<0.0801	< 0.0815	< 0.0825	< 0.0858	<0.0815	< 0.0818	< 0.0822	< 0.0788	<0.0800	<0.0804			0	
µg/L	< 0.0307	< 0.0302	< 0.0300	< 0.0305	< 0.0309	< 0.0322	< 0.0306								0	
µg/L	< 0.0102	< 0.0101	< 0.0100	< 0.0102	< 0.0103	< 0.0107	-								0	
µg/L	< 0.0205	< 0.0201	< 0.0200	< 0.0204	< 0.0206	< 0.0215	< 0.0204				200				0	
µg/L	< 0.0205	< 0.0201	< 0.0200	< 0.0204	< 0.0206	<0.0215	<0.0204								0	
µg/L	< 0.0409	< 0.0403	< 0.0400	< 0.0407	< 0.0413	< 0.0429									0	
	ng/L ng/L ng/L ng/L		19/L <0.0818 <0.0806 19/L <0.0307 <0.0302 19/L <0.0102 <0.0101 19/L <0.0205 <0.0201 19/L <0.0205 <0.0201 19/L <0.0205 <0.0201 19/L <0.0205 <0.0201	19/L <0.0818 <0.0806 <0.0801 19/L <0.0307 <0.0302 <0.0300 19/L <0.0102 <0.0101 <0.0100 19/L <0.0205 <0.0201 <0.0200 19/L <0.0205 <0.0201 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.	Ig/L <0.0818 <0.0806 <0.0801 <0.0815 Ig/L <0.0307 <0.0302 <0.0300 <0.0305 Ig/L <0.0102 <0.0101 <0.0100 <0.0102 Ig/L <0.0205 <0.0201 <0.0200 <0.0204 Ig/L <0.0205 <0.0204 <0.0205 <0.0204 Ig/L <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0204 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205 <0.0205	Ig/L <0.0818 <0.0806 <0.0801 <0.0815 <0.0825	1014 µg/L <0.0818 <0.0806 <0.0801 <0.0815 <0.0825 <0.0858 µg/L <0.0307	Page Page	Part Part	1971 1972 1973 1974 1975 1974 1975	Ing/L <0.0818 <0.0806 <0.0801 <0.0815 <0.0825 <0.0858 <0.0815 <0.0816 <0.0802 <0.0788	Ing/L <0.0818 <0.0806 <0.0801 <0.0815 <0.0825 <0.0858 <0.0815 <0.0815 <0.0816 <0.0802 <0.0788 <0.0800 <0.0800 <0.0800 <0.0302 <0.0300 <0.0305 <0.0309 <0.0322 <0.0306 <0.0307 <0.0308 <0.0296 <0.0300 <0.0300 <0.0102 <0.0102 <0.0102 <0.0102 <0.0102 <0.0103 <0.0204 <0.0206 <0.0215 <0.0204 <0.0205 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.0206 <0.020	Ing/L <0.0818 <0.0806 <0.0801 <0.0815 <0.0825 <0.0858 <0.0815 <0.0815 <0.0818 <0.0822 <0.0788 <0.0800 <0.0804 <0.0804 <0.0804 <0.0805 <0.0307 <0.0307 <0.0302 <0.0300 <0.0305 <0.0309 <0.0322 <0.0306 <0.0307 <0.0308 <0.0296 <0.0300 <0.0301 <0.0102 <0.0101 <0.0100 <0.0102 <0.0103 <0.0107 <0.0102 <0.0102 <0.0103 <0.0206 <0.0307 <0.0308 <0.0296 <0.0300 <0.0301 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.010	Ref Color Color	Rg/L <0.0818 <0.0806 <0.0801 <0.0815 <0.0825 <0.0858 <0.0815 <0.0815 <0.0815 <0.0815 <0.0815 <0.0816 <0.0807 <0.0307 <0.0302 <0.0300 <0.0305 <0.0309 <0.0302 <0.0306 <0.0307 <0.0308 <0.0296 <0.0300 <0.0300 <0.0301 <0.0816 <0.0816 <0.0816 <0.0816 <0.0816 <0.0822 <0.0788 <0.0800 <0.0804 <0.0804 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806 <0.0806	Fight

Distribution Points

Oxyhalide Anion

Contaminate	Units	1472 FM 2571 (1)	Temple (2)	New Sweden Church (3)	(4)	Word of Life Church (5)	La Cabana (6)	154 FM 2239 (7)	568 Pleasant Grove Road (8)	(9)	Knobbs Baptist Church (10)	Centex (11)	Jack Chamberlain (12)	Range	Average	Highest	Likely Source
Year Sampled							2014										
Chlorate	µg/L	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	31.3	<20.0	<20.0-31.3	31.3	31.3	

Metals

Contaminate	Units	1472 FM 2571 (1)	Buddha Temple (2)	New Sweden Church (3)	(4)	Word of Life Church (5)	La Cabana (6)	154 FM 2239 (7)	568 Pleasant Grove Road (8)	Blue VFD (9)	Knobbs Baptist Church (10)	Centex (11)	Jack Chamberlain (12)	Range	Average	Highest	Likely Source
Year Sampled							2014										
Chromium Total	μg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	<0.200	< 0.200	< 0.200	< 0.200			0	
Cobalt Total	μg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00				0	
Molybdenum	μg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00			-			<1.00			0	
Strontium						<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00			0	
	jig/L	608	720	457	469	485	1030	62.6	4150	668	1320	73.8	1350	62.6-4150	949	4150	
Vananium	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	1.60	< 0.200				
Hexavalent Chromium	µg/L	< 0.0300	< 0.0300	< 0.0300	< 0.0300									<0.200-1.60	1.60	1.60	
	There	NO.0300	VO.0300	100000	<0.0300	< 0.0300	0.0325	< 0.0300	< 0.0300	< 0.0300	0.0353	0.1230	< 0.0300	< 0.0300-0.1230	0.0636	0.1230	

Unregulated Contaminants Monitoring Rule III

Entry Points

Volatile Organic Compounds (VOC)

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014					The state of the s				- Billion	zamery Bouree
Chlorodifluoromethane (HCFC-22)	µg/L	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	< 0.0800	<0.0800	< 0.0800			0	
Chloromethane (Methyl chloride)	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200		1	0	
,3-Butadiene	µg/L	< 0.100	< 0.100	<0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	<0.100	<0.100			0	
Bromomethane (Methyl Bromide)	µg/L	<0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2			0	
,1-Dichloroethane	µg/L	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	<0.0300		1	0	
Bromochloromethane (Halon 1011)	µg/L	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600	< 0.0600	<0.0600	<0.0600	<0.0600			0	
.2,3-Trichloropropane	µg/L	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300		-	< 0.0300		< 0.0300	<0.0300			0	

Synthetic Organic Compounds (SOC)

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled						The state of the s	2014		ALC: N								
1.4-Dioxane	µg/L	< 0.0516	< 0.0521	< 0.0518	< 0.0522	< 0.0523	< 0.0525	< 0.0526	< 0.0519	< 0.0523	< 0.0525	< 0.0529	< 0.0521			0	

Oxyhalide Anion

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014						Park Co. Labor				
Chlorate	µg/L	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	29.5	<20.0	<20.0-29.5	29.5	29.5	

Metals

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L (7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014								age	- Inglicat	Zinery Bource
Chromium Total	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200			0	
Cobalt Total	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	2.51	<1.00	<1.00-2.51	2.51	2.51	
Molybdenum Total	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	11100 2101	210-1	0	
Strontium Total	µg/L	279	964	462	1050	457	891	64	401	4210	1210	63.5	1370	63.5-4210	952	4210	
Vananium Total	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	1.41	<0.200	<0.200-1.41	1.41	1.41	
Hexavalent Chromium	µg/L	0.0469	0.0371	< 0.0300	0.0569	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	< 0.0300	0.133	<0.0300	<0.0300-0.133	0.07	0.133	

Perfluorinated Compounds

Contaminate	Units	Rosanky (1)	S (2)	ER (3)	Highway 21 (4)	Camp Swift (5)	M (6)	L(7)	C (8)	Blue (9)	McDade (13)	Delhi (15)	McMahan (16)	Range	Average	Highest	Likely Source
Year Sampled							2014			E					- Transfer	III.g.i.c.st	zancij Bource
Perfluorobutanesulfonic acid (PFBS)	μg/L	<0.0818	< 0.0806	<0.0801	< 0.0815	< 0.0825	< 0.0858	< 0.0815	< 0.0818	< 0.0822	< 0.0788	< 0.0800	< 0.0804			0	
Perfluorohexanesulfonic acid (PFHxS)	µg/L	< 0.0307	< 0.0302	< 0.0300	< 0.0305	< 0.0309	< 0.0322	< 0.0306	< 0.0307	< 0.0308	< 0.0296	< 0.0300	< 0.0301		No. of the last of	0	and the second
Perfluoroheptanoic acid (PFHpA)	µg/L	< 0.0102	<0.0101	< 0.0100	< 0.0102	< 0.0103	< 0.0107	< 0.0102	< 0.0102	< 0.0103	< 0.00985	< 0.0100	< 0.0100			0	
Perfluorononanoic acid (PFNA)	µg/L	< 0.0205	< 0.0201	< 0.0200	< 0.0204	< 0.0206	< 0.0215	< 0.0204	< 0.0205	< 0.0206	< 0.0197	< 0.0200	<0.0201			0	
Perfluorooctanoic acid (PFOA)	μg/L	< 0.0205	< 0.0201	< 0.0200	< 0.0204	< 0.0206	< 0.0215	< 0.0204	< 0.0205	< 0.0206	< 0.0197	< 0.0200	<0.0201			0	
Perfluorooctanesulfonic acid (PFOS)	µg/L	< 0.0409	< 0.0403	< 0.0400	< 0.0407	< 0.0413	< 0.0429	< 0.0407	< 0.0409	< 0.0411	< 0.0394	< 0.0400	< 0.0402			0	

Distribution Points

Oxyhalide Anion

Contaminate	Units	1472 FM 2571 (1)	Buddha Temple (2)	New Sweden Church (3)	(4)	Word of Life Church (5)	La Cabana (6)	154 FM 2239 (7)	568 Pleasant Grove Road (8)	(9)	Knobbs Baptist Church (10)	Centex (11)	Jack Chamberlain (12)	Range	Average	Highest	Likely Source
Year Sampled						A STATE OF THE STA	2014		()								
Chlorate	µg/L	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	31.3	<20.0	<20.0-31.3	31.3	31.3	

Metals

Contaminate	Units	1472 FM 2571 (1)	Buddha Temple (2)	New Sweden Church (3)	(4)	Word of Life Church (5)	La Cabana (6)	154 FM 2239 (7)	568 Pleasant Grove Road (8)	Blue VFD (9)	Knobbs Baptist Church (10)	Centex (11)	Jack Chamberlain (12)	Range	Average	Highest	Likely Source
Year Sampled							2014										
Chromium Total	µg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	<0.200			0	
Cobalt Total	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00			0	
Molybdenum	µg/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00			0	
Strontium	µg/L	608	720	457	469	485	1030	62.6	4150	668	1320	73.8	1350	62,6-4150	949	4150	
Vananium	11g/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	1,60	<0.200	<0.200-1.60	1.60	-	
Hexavalent Chromium	µg/L	< 0.0300	< 0.0300	<0.0300	< 0.0300	< 0.0300	0.0325	< 0.0300	< 0.0300		0.0353	0.1230	<0.0300	<0.0300-0.1230	0.0636	1.60 0.1230	

DBP - 2

Contaminate	MCLG	MCL	Date	154 FM 2239 (DBP2-1)	5554 FM 535 Cedar Creek VFD (DBP2-2)	Bateman Road & Red Rock Ranch Rd. (DBP2-3)	973 & New Sweden Rd. Bohls Tank (DBP2-4)	Range	Highest	Likely Source
Year Sampled				2021	2021	2021	2021	<u>a</u>		
			2/2/2021	7.4	4.3	4.5	6.7			
Total HAA5 (ppb)			4/12/2021	8.0	3.4	8.4	7.0			
rotal Tivis (ppo)			7/26/2021	8.8	11.1	13.7	14.2			By-products of
			11/29/2021	10.6	5.9	7.3	9.2	3.4 - 14.2	14.2	drinking water
Locational Running Annual Average	N/A	60.0		8.7	6.2	8.5	9.3			disinfection.
Operational evaluation Level				9.5	6.6	9.2	9.9			
	THE STATE OF		2/2/2021	21.3	47.1	39.4	41.3			
Total THM (ppb)			4/12/2021	20.5	37.4	44.1	46.1			
rotal Trivi (ppo)			7/26/2021	25.5	67.9	64.8	78.7			By-products of
			11/29/2021	25.5	45.3	44.2	53.0	20.5 - 78.7	78.7	drinking water
Locational Running Annual Average	N/A	80.0		23.2	49.4	48.1	54.8			disinfection.
Operational evaluation Level				24.3	49.0	49.3	57.7			

Not Bold = less than the DL

Lead/Copper

		MCL	90th Percentile Value	# Site Above Action Limit	
Year Sampled	MCLG	(Action Level)	2020	2020	Likely Source
Copper (ppm)	1.3	1.3	0.186	0	Corrosion of household plumbing systems: Erosion of natural deposits.
Lead (ppb)	0	15	5	1	Corrosion of household plumbing systems: Erosion of natural deposits.

Asbestos

Contaminate	MCLG	MCL	1034 CR 337	Range	Highest	Likely Source
Year Sampled			2013			
Asbestos (MFL)	7	7	< 0.1987			Decay of asbestos cement water mains; Erosion of natural deposits.

MFL = Million fibers per liter.

Residual Disinfectant

Contaminate	MRDLG	MCL	Average	Range	Likely Source
Year Sampled			2019	2019	
Chlorine (ppm)	4	4	1.83	0.71-3.75	Water additive used to control microbes.

MRDLG = Maximum residual disinfectant level goal.

MRDL = Maximum residual disinfectant level.

Microbial

Contaminate	MCLG	MCL	2018		Likely Source Naturally present in the environment. Human and animal fecal waste.
Total Coliform Bacteria	0	Presence of More Than 5% of Monthly Samples	Highest Monthly % Positive Samples	0	
Fecal Coliforms and <i>E. coli</i>		A routine sample and a repeat sample are TC positive, and one is also fecal coliform or <i>E. coli</i> positive. An uncorrected <i>E. coli</i> -positive sample at the raw grioundwater source is a TT for the GWR.	Total # Positive Samples.	0	

TC = Total Coliform.

TT = Treatment Technique

GWR = Groundwater Rule.